CDS 201:Introduction to MATLAB for scientists (2)
Course Contents:
Objectives: In this hybrid theory & practical course, the students will learn to formulate a computational problem and use the MATLAB software and some of its toolboxes to create and troubleshoot basic sequential scripts and functions to achieve computational objectives. At the end of the course, the students will be able to use MATLAB as a simulation tool to perform basic array and mathematical operations, import datasets to effectively analyze and visualize data through interpolation, plotting, and curve fitting, apply numerical techniques in computer simulations, generate plots and export them to create scientific publishable figures. The students will also be trained on good programming practices. The final goal of the course is to motivate students to explore more of MATLAB on their own for their individual research projects.
Prerequisite:
There is no formal prerequisite for this course. Basic mathematical courses would be a plus.
Lectures:15 hours of lecturing + 30 hours of lab
Syllabus:
Introduction: MATLAB environment, editor, scripts, live scripting, and functions; Basics - data types, creating and editing variables, entering commands, use of operators and expressions, generating, editing, running, and saving simple script files.
Good programming practices: planning approach, use of comment lines and indenting, code simplification and debugging.
Matrix laboratory: Creating, manipulating, and accessing data in vectors and arrays (matrices), key inbuilt MATLAB functions & input/output statements. Introduction to user-defined functions.
Graphics with MATLAB: File types, file management (importing and exporting data), plotting (2D, 3D, subplot), plot properties, axis properties, exporting figures.
Programming with MATLAB:Conditional statements (logical operators, if, else elseif, switch), Introduction to loops (for and while), Nested loops.
Mathematical computing:Algebraic expressions and linear equations, symbolic calculus, differential equations, integration, and differentiation. Numerical techniques and Fourier transforms.
References:
![]() |
Back to Course List | Next ![]() |