**PHY ****304: Quantum Mechanics II**** ****(4)**

** Prerequisite**:

*PHY 303 Quantum Mechanics I, PHY 301 Mathematical Methods I*

*Theory of Spin:* Stern-Gerlach experiment; Formulation of spin ½ states; Pauli matrices; Addition of angular momentum

*Approximation Methods for Stationary States: *Time Independent Perturbation Theory: Formalism; Applications to relativistic corrections (‘fine structure corrections’) to atom (a) Relativistic K.E, (b) Spin-Orbit couplings, (c) Darwin term; WKB method: Descriptions of tunneling
Variational method: Application to He atom ground state

*Time Dependent Phenomena:* Formalism; Fermi’s Golden rule; Adiabatic approximations; Application to matter-radiation interactions; Emissions and absorptions of photons; Selection rule for electric dipole transitions; Applications to Lasers

*Scattering by a Potential:* Formalism; Born approximations; Partial wave analysis

Symmetries in quantum mechanics

Relativistic Quantum Mechanics: Klein Gordon Equation; Dirac Equation; Plane wave solutions; Negative energy states; Spin; Magnetic moments; Non-relativistic limit of the Dirac equation

*Suggested Books*:

- H. C. Verma,
*Quantum Physics*. - R. P. Feynman, R. B. Leighton and M. Sands,
*The Feynman Lecture of Physics Vol 3*. - J. J. Sakurai,
*Modern Quantum Mechanics*. - B. H. Bransden and C. J. Joachain,
*Quantum Mechanics*. - D. J. Griffiths,
*Introduction of Quantum Mechanics*. - P. A. M. Dirac, The
*Principles of Quantum Mechanics*. - C. Cohen-Tannoudji,
*Quantum Mechanics, (Vol I and II)*. - R. Shankar,
*Principles of Quantum Mechanics*. - I. M. Rae,
*Quantum Mechanics*. - E. Merzbacher,
*Quantum Mechanics*. - L. D. Landau and L. M. Lifshitz,
*Quantum Mechanics Non-Relativistic Theory*.

Previous | Back to Course List | Next |